搜狐首页 财经 法医秦明2

手机搜狐

SOHU.COM

计量模型好坏的评价标准,经济研究如是说

下面这篇文章分成二部分,第一部分是关于因果推断和宏观计量的纠葛,第二部分是模型adequacy的检查。如果不喜欢第一部分的内容,可以直接跳转到关于modeladequacychecking的部分。

因果关系的识别和推断

一项经济学经验研究,应该与一个清晰的、表述确切的目标相联系,只有了解构建一个模型的初衷,我们才能对其做出评价(Granger,1999)。而在诸多目标之中,因果关系的推断是核心。因果关系首先是一个哲学概念,但哲学上迄今没有给出普遍、严格、可量化的定义,社会科学对因果关系的测度更多地是基于某一角度的考虑。例如,计量经济学中广为采用的Granger 因果关系检验就是从变量之间的预测关系来检验因果关系。如何定义因果效应并进行有效识别则成为可信性革命第二次和第三次大讨论的核心话题。

(一) 有效识别因果关系的困难之处

Stock &Watson(2007)指出,因果效应(casualeffect)可以定义为,在一个理想的随机化控制实验中,一个给定的行为或处理对某一结果的影响。Wold(1969 )明确指出,计量经济学想成为一种基础创新的科学方法,关键在于必须克服由于缺少实验所带来的局限性。在实验室条件下,先验控制某因素的效应与后验分离出该因素的效应,其结果是等价的。而现实中得到的数据大多是观测数据,我们若想在计量经济学也取得这种等价性,就必须首先将与“实验”有关的所有非控制因素的效应全部测定并分离出来。

研究者往往通过在回归方程中引入足够多的控制变量来构造一种类似于实验的环境,即获得关注变量的净效应(Woodridge,2003;Stock,2010)。我们认为,这只是获得因果效应的必要条件而不是充分条件。一方面,计量经济学分析的重要环节之一就是如何判断究竟哪些因素与“实验”有关,只要无法确定所有显著有关的变量,我们就面临着误设实验模型的问题,因而也不具备实验科学所要求的基础条件(Hendry,1995)。另一方面,即使是一种因果关系,基于回归模型也很难对其背后的作用机制进行清晰的刻画,或者明确究竟是哪一项机制在起作用。因此,无论是因果效应的存在性,还是其背后的具体作用机制的识别,都需要在研究设计和模型设定中充分考虑。

经验研究中的另一种处理方式是基于描述性计量建模进行明确的因果关系推断。例如通货膨胀持久性研究,有些研究者基于自回归、不可观测成分、状态转移等模型进行了明确的因果论断。但是,这些模型都属于描述性的统计模型,意在刻画通胀的统计特征,唯有以不同形式施加经济假设,建立诸如粘性信息模型、学习模型、Calvo-Rotemberg 模型或者DSGE 模型,才能解释通货膨胀持久性的经济动力源(Fuhrer,2011)。又如地方政府策略互动行为的研究,往往以空间计量模型中的空间滞后系数度量策略互动行为的方向与强度。部分研究者仅据此进行特定策略互动机制的因果效应阐述是不恰当的,原因是忽视了两个重要的识别问题: 第一,空间滞后关系既可能是地方政府策略互动过程的结果,也可能是某些遗漏的地区特征的外生相关或者对地方政策的共同冲击所致;第二,支出溢出、财政竞争以及标尺竞争等理论假说都可以推导出同样的简化型地方政府政策反应函数,空间滞后模型本身不能识别哪种机制在起作用。我们认为,对于描述性建模工作,模型结果的相关背景或者可能原因的阐述是有必要的,但不能过度推广甚至是错误推广其经济含义。

精选