搜狐首页 汽车 法医秦明2

手机搜狐

SOHU.COM

车用永磁同步电机如何实现高速-控制篇

电动车牵引电机的速度很高,经常到1万转以上,单靠电机实现高速是困难的,换个思路从控制出发,能够收获更多的效果。

1

为什么要弱磁

如下图所示,同样的电机,无弱磁控制和带弱磁控制最高速度相差很大。好的弱磁控制甚至能够将转速提高到3倍以上,这就是控制算法的威力。

弱磁的基本原理

永磁同步电机在额定转速以下,可以做到恒转矩调速,当超过额定转速时,不像电励磁电机那样方便,只要减小励磁电流就可做到弱磁升速,永磁同步电机要通过控制逆变器开关元件,使定子电流相位提前,削弱永磁励磁磁场,从而达到弱磁升速的目的。

永磁同步电机弱磁示意图

额定转速一下时电机电枢电流产生的电枢磁通 Φa与永磁励磁磁通 Φf在空间垂直,合成磁通 Φ 幅值和相位维持不变,额定转速以上时,电机电枢电流产生的电枢磁通 Φa与永磁励磁磁。通 Φf在空间不在垂直,大于 90°,合成磁通 Φ 幅值减小,相位增加,电机转速上升

因此所谓弱磁就是,利用定子电枢的磁场去抵消掉一部分永磁磁场,让电机的反电动势降低,不至于超过电压极限

车用电机弱磁的主要挑战

虽然弱磁的功能强大,但在车用电机高速化的过程中,还是会遇到很多问题和挑战。

前面我们说过,弱磁就是防止反电势超过电压极限,如果能提高电压极限那么转速范围会更高。这个电压极限是由母线电压和控制算法共同决定的,好的控制算法能够提高母线电压利用率。

上式是电机最高转速的计算公式,分母即为电机的电压极限。通过改进控制算法能够有效提高母线电压利用率。有一种方法通过调节电机边界形状来实现利用率提高。

常规的SVPWM线性控制的电压势力工作在左图正六变形的内切圆区域。这时电机相电压最高到达Udc/sqrt(3),如果能工作在正六变形的边上,最高电压可以达到2Udc/π,母线电压利用率提高了10%,电机的转速至少会提高10%以上。有人利用这个原理,做了控制算法设计,叫最小幅值跟随算法,如下图所示,当实际要求控制电压超过正六变形时,会将给出电压按幅值缩减最少的原则,调整至正六边形的边上。而传统算法只能调整至内切圆上。如此大大提高了母线电压利用率。当然这种算法也有一些问题,会导致电流波形正弦性变差

电感参数的非线性

车用永磁电机,在追求高速的同时,还追求高功率密度,因此往往会有高凸极比,高磁场饱和的特征,这也就意味着传统的依据线性电机模型设计的弱磁控制算法,效果会变差。不但最高转速会降低,而且电流和损耗都会变大。在调整PI参数的时候也会相对困难。

精选