搜狐首页 科技 法医秦明

手机搜狐

SOHU.COM

四种模式!看工业大数据如何驱动智能制造

工业大数据是在工业领域信息化应用中所产生的数据,随着信息化与工业化的深度融合,使得工业企业所拥有的大数据日益丰富。如何实时感知、采集、监控生产过程中产生的大量数据,运用大数据技术对企业产生及拥有的海量数据进行挖掘,得到有作用的分析结果,从而实现智能制造,是制造企业最为关心的一个话题。下面,我们为您介绍工业大数据驱动智能制造的四种作用模式。

模式一:实现个性化定制

企业通过互联网平台能够收集用户的个性化产品需求,也能获取到产品的交互和交易数据;挖掘和分析这些客户动态数据,能够帮助客户参与到产品的需求分析和产品设计等创新活动中,实现定制化设计,再依托柔性化的生产流程,就能为用户生产出量身定做的产品,从而实现定制化设计。

模式二:实现智能化生产

首先,提升车间管理水平。现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声等,利用这些数据可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析(包括违反生产规定、零部件故障)等。在生产过程中使用这些大数据,就能分析整个生产流程,一旦某个流程偏离了标准工艺,就会发出报警信号,快速地发现错误或者瓶颈所在。

其次,优化生产流程。将生产制造各个环节的数据整合集聚,并对工业产品的生产过程建立虚拟模型,仿真并优化生产流程。

最后,推动现代化生产体系的建立。通过对制造生产全过程的自动化控制和智能化控制,促进信息共享、系统整合和业务协同,实现制造过程的科学决策,最大程度实现生产流程的自动化、个性化、柔性化和自我优化,实现提高精准制造、高端制造、敏捷制造的能力,加速智能车间、智能工厂等现代化生产体系建立,实现智能生产。

模式三:实现精益化管理

优化工业供应链。RFID等电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。跟踪产品库存和销售价格,而且准确地预测全球不同区域的需求,从而运用数据分析得到更好的决策来优化供应链。

推动经营管理全流程的衔接和优化。整合企业生产数据、财务数据、管理数据、采购数据、销售数据和消费者行为数据等资源,通过数据挖掘分析,能够帮助企业找到生产要素的最佳投入比例,实现研产供销、经营管理、生产控制、业务与财务全流程的无缝衔接和业务协同,促进业务流程、决策流程、运营流程的整合、重组和优化,推动企业管理从金字塔静态管理组织向扁平化动态管理组织转变,利用云端数据集成驱动提升企业管理决策的科学性和运营一体化能力。

精选