搜狐首页 科技 法医秦明

手机搜狐

SOHU.COM

中国碳卫星“把脉”全球大气

2016年12月,我国在酒泉卫星发射中心成功发射全球二氧化碳监测科学实验卫星(简称“碳卫星”)。这是我国首颗专门用于监测全球大气中二氧化碳含量的卫星,搭载了高光谱与高空间分辨率二氧化碳探测仪和多谱段云与气溶胶探测仪等设备。这也是继美国、日本之后的全球第三颗碳卫星。为什么要发射这样一颗卫星?监测二氧化碳状况意义何在?怎么监测到二氧化碳?这颗卫星还携带了哪些“高精尖”科技设备呢?

“碳排放”数据

温室效应正直接威胁着全人类的生存和发展,在如此严峻的形势下,减少二氧化碳等温室气体的排放成为必然选择。为了达到巴厘路线图的“三可”量化减排目标(可测量、可报告、可核查)和相应计量方法,各国政府都迫切希望能有切实可行的测量方法和技术,为全球碳循环的研究提供可信的数据支持。

地面观测点能搜集大气中的二氧化碳数据,为什么还要发射卫星?碳卫星工程地面应用系统总设计师杨忠东说,全球二氧化碳地面观测站点总共仅有数百个,难以满足监测需求,只有用卫星俯瞰,才能绘制二氧化碳分布的全景图。

正因如此,各发达国家纷纷研发专用卫星。由于技术难度极高,目前仅有两颗卫星从太空监视地球温室气体排放:一颗是日本于2009年发射的温室气体观测卫星“呼吸”(gosat)号;另一颗是由美国2014年发射、专门用于大气二氧化碳浓度测量卫星oco—2卫星。

据科技部国家遥感中心总工程师李加洪介绍,我国发射的碳卫星通过地面数据接收、处理与验证系统,定期获取全球二氧化碳分布图,使我国在大气二氧化碳监测方面跻身国际前列。“持家先要有账本,这个‘账本’就是我们自己监测到的碳排放量。在碳排放数据上知己知彼,对提升我国在国际气候变化方面的话语权具有重要意义。” 李加洪说。

自备“千里眼”

碳卫星实现大气温室气体探测是基于大气吸收池原理,二氧化碳、氧气等气体在近红外至短波红外波段有较多的气体吸收,形成特征大气吸收光谱,对吸收光谱的强弱进行严格定量测量,应用反演算法即可计算出卫星在观测路径上二氧化碳的柱浓度。

通过对全球柱浓度的序列分析,并借助数据同化系统的一系列模型计算,可推演出全球二氧化碳的通量变化(单位时间通过单位面积的二氧化碳总量),这正是碳循环研究的核心数据基础。

要获取高精度的大气吸收光谱,并识别出哪些是二氧化碳,还要作出一张张“动态图”,碳卫星就需要借助特制的“千里眼”,它就是碳卫星的主载荷——高光谱与高空间分辨率二氧化碳探测仪,其工作原理是在可见光和近红外谱段,利用分子吸收谱线探测二氧化碳浓度。

精选