搜狐首页 科技 法医秦明

手机搜狐

SOHU.COM

现代战斗机隐身技术窥见

今年十月份,中国空军新闻发言人申进科大校宣布,空军试飞员将驾驶国产歼20战斗机在第11届珠海航展上进行飞行展示。歼20首次公开亮相,举国振奋,中国空军正式进入隐身时代。当然这里说的“隐身”可不是像科幻片中那样消失不见,而是通过一些手段使飞机不被敌方雷达所探测到。那么战斗机为什么会被探测到呢?现代战斗机又是怎样实现隐身的呢?让我们来探索现代战斗机的隐身之谜。

▲采用中国空军涂装的歼20战斗机

战斗机为什么会被探测到?

雷达是防空系统中的主要探测设备,其发射机通过雷达天线把电磁波能量射向空间某一方向,当碰到处在此方向上的目标时,部分雷达波会发生反射,返回到雷达天线,雷达天线将接收到的反射波发送至接收设备进行处理,可以获取一定目标信息,如与雷达的距离、速度、方位、高度等

衡量目标在雷达波照射下所产生的回波强度常常以物理量雷达散射截面RCS作为依据。RCS是目标的一种假想面积,值越小,表明该飞机反射的雷达能量越小,被敌方发现的可能性也就越小。一架飞机的RCS不是一个单值,不同的视角会有不同的值。以F-16战斗机为例,其正前方RCS为4㎡,而侧向大于100㎡。

主要影响目标RCS特征的因素有

1

目标的形状

通过实验可以发现RCS与目标的形状密切相关。如垂直于雷达波束的平板,其反射面积是圆球的10000倍。而具有尖侧缘、下部扁平的融合柱体比圆球RCS更小,这是因为它能使入射波变成表面波,从而降低散射。如何在满足结构功能需求的前提下使飞机上的部件性状RCS越小也成为一个非常热门的研究方向。

▲图:不同几何形状对应的RCS

2

角反射器和空腔体的存在

角反射器(如导弹挂架)和腔体(如进气道,座舱盖)可以使雷达波原路返回,因此,要减小RCS必须消除角反射器和腔体,而通过改变角反射器的形状和腔体的类型就是一种不错的选择,例如将进气道直管道改成S型后,就可通过增加入射波的反射次数来增加对入射波的吸收,这种技术就成熟的用于美国B-2轰炸机上,进气道采用了“背负式锯齿型并列双发大S弯”设计来增强其的隐形功能。

▲图:美国B-2轰炸机

3

目标表面的不连续和缝隙

雷达波诱导产生的表面波和爬行波在目标表面遇到结构边缘、翼面后缘和缝隙时,会产生原路返回的雷达波。因此要减小RCS必须使飞机尽量光滑,减小边缘和缝隙,同时要使边缘和后缘后掠,避免原路反射。

精选